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ABSTRACT 

A data-sharing scheduler is defined in terms of finite-state 
machine theory.  Using the language and concepts of finite-state 
machines, we give precise definitions for the notions of "delayed," 
"blocked," "deadlock," "permanent blocking," and "sharing a datum"; 
these notions and their interrelationships lead to a characterization 
of a class of scheduler (unrestricted and nontrivial); a basic theorem 
of data sharing is stated and proved, and its implications are explored, 
We also give a narrative summary and discussion of the main result of 
the work suitable for the system designer or analyst. 
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SECTION I 

INTRODUCTION 

Most data-sharing models which purport to avoid deadlock, 

including the models described in (6) (Part 1 of this series, which 

we shall hereinafter refer to as "HC1"), require an entering process 

to state which data elements it may use during its run.  This require- 

ment of prior knowledge seemed to be a logical candidate for weakening 

when we began attempting the formulation of a new model.  A few ini- 

tial failures in this direction suggested that perhaps prior knowledge 

of the requirements of a process is necessary to any data-sharing 

system which prevents deadlock.  It is the intent of this paper to 

investigate the necessity of "prior knowledge" rigorously. 

The sections of this paper are in the order which we felt would 

be most convenient for the majority of readers who may wish to apply 

the results reported herein to the practical problems of system 

design.  We have, for example, presented the main result in narrative 

form together with some of its practical implications in the next 

section.  The mathematical and developmental aspects of the work are 

then presented in subsequent sections. 

The language of complete sequential machines was chosen to pro- 

vide a rigorous framework for the investigation.  Sections III through 

VI inclusive, assuming the material of the Appendix, develop concisely 

the relevant concepts involved in data sharing. 



SECTION II 

SUMMARY 

PRECIS 

We shall first, in narrative form, describe the main concepts 

which we have developed rigorously in the remainder of this paper. 

Then we shall state the main result of this paper.  Finally, we shall 

briefly discuss the implications of the main result from the point of 

view of the system designer. 

We consider the management of access to data in a system to be 

controlled by a Scheduler which is embedded in the system.  The data 

in the data base are of two types with respect to the Scheduler:  the 

data which may at some time in some mode of use be non-shareable 

simultaneously by two or more users (the critical data) and the data 

which are always shareable simultaneously by two or more users (the 

noncritical data).  The function of the Scheduler is to avoid situa- 

tions wherein critical data are being inappropriately shared. 

Schedulers will be categorized broadly in two major ways in this 

paper.  The first categorization involves the manner in which the data 

base is shared.  A Scheduler is said to be nontrivial if it allows 

two or more users to have simultaneous access to critical data in the 

data base (perhaps two different data elements).  On the other hand, 

a Scheduler is trivial if no more than one user at a time can have 

access to any elements in the critical data base.  In a certain sense, 



a trivial Scheduler acts as a queue for the elements of the data base 

which cannot always be shared (i.e., as a queue for the critical data). 

Two examples may illustrate what we mean to include in the desig- 

nation "trivial Scheduler." If a Scheduler allows only one user access 

to the entire data base (one user at a time), no deadlock can occur 

and integrity of the data base can be preserved.  In this case, the 

Scheduler acts as a queue of processes waiting for access to the entire 

data base:  a request for access to a datum is granted if no other 

process has access to any element of the data base and is denied if 

any other process has access to some element of the data base.  Sup- 

pose instead that a Scheduler always grants requests for access to 

data except for one datum, say d'; a request for access to d' is 

granted only when no other process has access to d'.  Then, deadlock 

cannot occur since only requests for d' are ever denied; also, by 

assumption, simultaneous access to any element except d' will not 

compromise the integrity of the data base.  In this case, the Scheduler 

acts as a queue with respect to d' and as a green light for the rest 

of the data base.  This example is easily generalized so that D' con- 

tains a subset of the data base and only one process at a time may 

have access to elements in D'. 

The second categorization of Schedulers concerns "prior knowledge" 

of the users' needs.  In the models of HC1, for example, a process 

must state its claim list before it begins its run; for the remainder 

of the run, the system and that process share the knowledge of which 



data can be accessed and in what mode. This claim list is prior 

knowledge of the process's data needs during the run. Requests for 

data that are not properly claimed on the claim list are illegal and 

would be considered errors.  In other models, an entering process 

can be required to supply information about its data needs and about 

the order in which the data will be used.  In every case, the limiting 

values on a process's access capabilities, as a list of legal requests 

for data, would be considered prior knowledge.  In this paper, we 

have used a more general concept which is explained below. 

A Scheduler is said to be unrestricted if every request for 

access to any datum by any user is legal at any time.  A Scheduler 

is restricted if some request for access to some datum by some 

user is illegal at some time.  A restricted Scheduler has prior 

knowledge of the users' actions in that there is at every instant a 

list of acceptable (legal) requests that each user can make.  The 

lists need not remain static as in the models of HC1; the only 

requirement is that there be such lists.  In a real system, a user 

will know his options at each stage of his run and will thus be aware 

of the constraints placed on him. Notice, however, that unrestricted 

does not mean that every request for access will immediately be 

granted; indeed, we allow that an unrestricted Scheduler may deny a 

request for access to some datum by some user. 

The forms that restricted Schedulers can take are many, as these 

examples will indicate. The models of HC1 are typical examples of 



restricted Schedulers.  Another interesting example can be formulated 

in terms of the "name your elements in order" strategy for access. 

In this strategy all accessible elements are assumed to be ordered 

(i.e., there is a first, second, third, ...).  A rule imposed on a 

process (user) is that it must always ask for access to elements in 

ascending order of their arrangement; it need not ask for elements 

which are contiguous in the ordering.  The rule simply says that if 

a process is going to ask for an element b and a is the latest element 

it has acquired access to, then b must follow a in the ordering of 

the elements.  If we assume that no elements may be shared and that 

the rule is enforced, then we have an example of a system which does 

not have a deadlock state and which does not share a datum; clearly, 

however, the Scheduler which manages this is restricted since a pro- 

cess having b may not legally ask for a, where a precedes b in the 

ordering of the elements. 

Intuitively, an optimal Scheduler would be nontrivial (to effect 

as much "sharing" as possible) and unrestricted (to rid the users of 

the necessity of using some version of claims lists).  However, the 

Basic Theorem stated and proved in Section V says essentially that 

"an unrestricted, nontrivial data-sharing Scheduler has a 
deadlock state or a state in which it shares a critical 
(unshareable) datum." 

The major implications of the Basic Theorem are that an unrestricted, 

nontrivial, deadlock-free data-sharing system cannot guarantee integrity 

of the data base and that an unrestricted, nontrivial data-sharing system 



that does guarantee integrity of the data base cannot be deadlock-free. 

In other words, a design for a data-sharing system which must prevent 

deadlocks while guaranteeing integrity of the data base must involve 

either a restricted Scheduler or a trivial Scheduler. 

CONCLUSIONS 

We have arrived at two basic sets of conclusions, one having to 

do with data-sharing models and the other having to do with future 

investigations in this area. 

The Basic Theorem of this paper indicates that in investigating 

strategies for achieving harmonious cooperation one must impose some 

restrictions on the users of the system.  The particular form the 

restrictions take are of course important to the system designer since 

he will certainly wish to optimize one or more parameters and since 

different sets of restrictions could cause the data-sharing systems 

to appear quite different to the users. 

Our conclusions about data-sharing models center around our 

evaluation of the generality of the models in HC1.  The Basic Theorem 

further indicates that the models of HC1 are essentially representa- 

tive of the entire family of models which preserve integrity of the 

data base and which prevent deadlock and permanent blocking.  The 

theorem indicates also that other significant models in the family 

are to be found by investigation of the conditions which make the 

models of HC1 restricted schedulers—to wit, investigation of 



alternatives to static declaration by a process of its claim lists. 

Modifications to the strategies of HC1 or alternate strategies not 

having to do with this aspect of the model do not essentially change 

the model but may affect factors such as efficiency. 

With regard to future work in this field, we believe that it will 

be fruitful to pursue the theoretical investigation begun in this 

paper—this belief seems justified in light of the-significant result 

obtained from our simple use of basic finite-state machine theory. 

An obvious extension of this work would be the development of a char- 

acterization of a system with respect to permanent blocking, similar 

to the characterization presented herein with respect to deadlock. 



SECTION III 

DATA-SHARING SCHEDULERS 

A number of data-sharing schemes (see (6, 4)) can be pictured 

as involving a black box for processing requests for data. Such a 

black box will typically receive as inputs 

(1) requests for access to a datum in a particular mode (for 

example, write or read-only) and 

(2) notifications that a particular datum has been returned to 

the data base. 

The data-sharing scheme provides a method for the black box to process 

a request or a notification.  The first capability is usually to 

determine whether the input signal is "legal." For example, if a 

process is forbidden by the scheme to request datum s in a write 

mode, a request from P for write access to datum s would normally 

cause the system to label the request an error.  If an input is 

acceptable, it is processed.  An acceptable request input produces 

either a granting response or a denying response. An acceptable 

datum-release input will generally cause internal bookkeeping; some- 

times a release of a datum will cause the system to grant a request 

that had been denied earlier.  For our purposes, another concept 

we must deal with is the idea that some record must be kept of the 

status of each datum and of each process:  if this type of record is 

not kept, an actual data-sharing system could become hopelessly entangled. 

8 



The discussion in the preceding paragraph will be taken as 

justification for the definition of a data-sharing scheduler below. 

The material which follows uses the definitions found in the 

Appendix. 

Let P = {P. , . . . , P } and S = {s. ..... s } be finite 
—    1 n     —    1 m 

sets.  An element of P_ will be called a "process" and an element of 

S^ will be called a "datum".  A complete sequential machine 

M = (K, E, A, X, 6) is a data-sharing scheduler for (P, S)   if 

(1) I  D A U R, where 

(a) A is a set whose elements are called "requests" and 

(b) R = {r(a):  a e A}  is a set whose elements are called 

"releases"; 

(2) A D {0, error} U (G(a):  a e A} U (D(a) :  a e A}; 

(3) there is a unique state qn e K such that any q e K is 

of the form q = <5(qn, J)  for some tape J; and 

(4) any state q e K specifies which processes have been 

granted access to which data and which processes have been 

denied access to some datum and have not yet been granted 

access in this state—that is, every state q records the 

current data allocation. 

The elements of  A are to be understood as requests for access 

to data.  We shall denote by "A.," the set of all requests for 

datum s  by process P .  In other words,  A is the disjoint 

union of all the sets A   where 1 < i < n and 1 < j < m,  and 

any element of A., will be understood to be a request by P.  for 

some (unspecified) kind of access to datum s..  "a-.i" will be used 



to denote an element of A . The elements of R are to be under- 

stood as notifications of the release of a datum: r(a..)  is the 

notification that P  relinquishes access to datum s.  as specified 

in request a,.. 

The output G(a..)  is the granting of request a..; D(a..)  is 

denying it.  The output error indicates an inappropriate input was 

supplied:  for example, we would normally expect ^(qn» r(a,,)) = error 

for every request a..-  The output 0 is a go-ahead signal which 

is used when an input r(a)  yields neither an error output nor a 

G(a )  output. 

With this precise definition of a data-sharing scheduler in 

hand, we are now in a position to begin a rigorous investigation of 

the major problems involved in data-sharing—blocking, deadlock, and 

integrity of the data base. 

The specification of a data-sharing scheduler does not take into 
account the action taken by the system when a request is denied. 
In particular, no assumption is made about whether a process is 
queued following a denial of its request. 

10 



SECTION IV 

BLOCKING AND DELAYS 

One of the problems that a data-sharing scheme must deal with 

is permanent blocking.  Permanent blocking of a process P is a 

situation where it is possible for P to be "temporarily" denied 

access to some datum repeatedly for an indefinite period of time. 

Permanent blocking in a resource-sharing situation is discussed by 

Holt,   and examples of permanent blocking in a data-sharing situa- 

tion are given in Section IV of HC1 (on pages 32 and 35).  One solu- 

tion to the problem of permanent blocking for data sharing is given 

in the second and third models of HC1.  In essence, the solution's 

strategy is to close the system to entering processes when it first 

appears that some process P may be permanently blocked.  The system 

then becomes internally identical to a system where no processes 

can enter.  If each process terminates in a finite amount of time and 

if no processes can enter the system, then permanent blocking cannot 

occur by Theorem 11 of HC1.  Hence the strategy used in HC1 guarantees 

that if a process P is given special attention to prevent it from 

becoming permanently blocked, then in some (unspecified) finite 

amount of time P will be able to proceed.  The remainder of this 

section will provide both rigorous definitions of the concepts involved 

here and a brief analysis of their interrelations. 
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Let M«(K, E, A, A, 6)  be a data-sharing scheduler for  (P_, S) 

For q e K, we say that P  is waiting for access to s.  at q 

via a   (or briefly,  "P  is waiting for s.  at q") if there is 

a state q1  and a tape J such that 

(1) A(q\ a ) = D(a ); 

(2) 6(q', a±.J) = q;  and 

(3) A(q', a..J)  does not contain G(a,.). 

Heuristically, P  is waiting for s  at q = <5(q', a J)  if P 

was denied access to s.  at q'  and access has not yet been granted 

to P . 

The intuitive idea of permanent blocking is that a process P 

is waiting for s.  at q and that P  could be waiting after any 

number of inputs  (all "legal" in the sense that no one of them 

elicits an error output) has been processed.  Our definition of per- 

manent blocking will rely on the definitions below of "legal tapes" 

and of "k-blocked." 

An input tape J will be called legal for q e K if 

error i  A(q, J).  We say that P  is k-blocked at q via a   if 

P.  is waiting for s  at q via a   and there is an input tape 

J of length k which is legal for q such that G(a ) ^A(q, J). 

That is,  P.  is k-blocked at q via a.,  if it is possible for 

k "legal" inputs to be processed without granting the request a... 

Clearly our definition of permanently blocked must imply k-blocked 

for every k. 

12 



We say that P  Is permanently blocked at q  if P  Is 

waiting for s.  at q via some a   and P.  is k-blocked via 

a.,  for all k > 0.  An equivalent statement of permanent blocking 

is given in Theorem 1. 

Theorem 1:  P  is permanently blocked at q if and only if P 

is waiting for s.  at q via some a.,  and there is 
J iJ 

k k 
a sequence  {I : 0 < k  and  I  e E}  such that 

G(a ) i  X(q, I  ... I )  and I  ... I  is legal for 

q for every m > 0. 

Proof:     The condition is sufficient.  To show P  is k-blocked 

at q via a  ,  it suffices to consider the legal 

tape I  ... I . 

Conversely, suppose P  is permanently blocked at q 

via a...  For s > 0,  let A  denote the set of legal ij s 

tapes  J  of length s  such that  G(a  ) t   X(q, J). 

Since P.  is permanently blocked via a..,  each 

A ^ if    for s > 0.  Also, if s > 1 and J = J*IeA 
s s 

where I e E,  then J* is a legal tape of length s - 1 

such that G(a ) i  X(q, J*): X(q, J*)  is a subset of 

A(q, J). Hence every element J of A (s > 1)  is of 

the form J = J*I where J* e A ,  and I e E.  Since 
s-1 

E is finite,  A ,n  is finite provided A  is finite. 
s+1 s 

Moreover,  A  is finite as a subset of  E.  Hence every 

A  is finite.  Define F : A •+?(.&.,)     (the "power 
s s  s     s+1 

13 



set" of A ,n—that is, the set of all subsets of A .„) 
s+1 s+1 

by F (J) = {JI: JI is a legal tape for q and s 

GCa^) 4Kq,  JI)}. 

The sets {A :  0 < s}  and {F :  0 < s} have the 
s s 

property that for any k > 0 there is a sequence 

{J(^, ..., J•]  such that J(k) e A  for 0 < s < k 
1        k. s    s = 

(k) Ckl 
and J\_' e F (Jv ')     for 0 < s < k.  By the Kbnig 

S T 1     s   s 

Graph Theorem,   this property implies that there is a 

sequence {J :  0 < s}  such that J e A  and 
s s   s 

J - e F (J )  for all s > 0.  Set J.. = I  and write 

s+1 k 
J ... = J I    for all s > 1.  The sequence {I :  0 < k} s+1   s 

of inputs establishes that the second condition of the 

theorem is necessary. 

An interpretation of this theorem is that P is permanently 

blocked at q if it is possible for some sequence of legal inputs 

never to grant P. access to an s. for which P is waiting at 

q. That is to say, the theorem shows that the rigorous definition 

of permanent blocking given in this section conforms with the usual 

intuitive notion of permanent blocking. 

As mentioned before, the strategy for avoiding permanent blocking 

in the models of HC1 alters the rules of the game so that a process 

P  in danger of permanent blockage is guaranteed that in some finite 

amount of time its denied request will be granted.  Moreover, if one 

knew a maximum number of data transactions left in the run of each 

14 



other running process, one could calculate the maximum length of 

"time" (measured in legal data transactions - a request or release) 

that P would have to wait before his request would be granted. 

This concept of the "maximum wait time" has some interesting relations 

with the various concepts of blocking. 

We will say that  P.  is k-delayed at  q via a   if 

(1) P.  is waiting for  s,  at  q via a,.; 
i j lj 

(2) for all legal tapes  J  of length k, G(a ) e A(q, J); and 

(3) there is a legal tape J* of length k - 1 such that 

G(a ) i  X(q, J*). 

Thus, P  is k-delayed if it has been denied access to some s.  via 

some a..  and if it is possible that it will have to wait for k 
ij 

legal inputs to be processed before it gains access but not possible 

that it will have to wait for more than k legal inputs to be pro- 

cessed.  An immediate result is the following theorem. 

Theorem 2:  If P  is k-delayed at q via a   for k > 1 and 

I E Z  such that  A(q, I) 4-  error or  G(a ,) ,  then 

P  is m-delayed at 6(q, I)  via a   for some 

1 < m < k. 

Proof;     P  is still waiting for s  at 6(q, I)  via a  . 

Moreover, for any legal input tape J of length k - 1, 

IJ is a legal tape of length k so that 

G(a ) e X(q, IJ) = X(6(q, I), J).  Suppose J* is the 

longest legal tape such that GC3^) i  *(<5(q, I), J*) • 

15 



Then the length of J* = n < k - 1. Hence for any legal 

tape J of length m = n + 1, G(a..) e A(6(q, I), J) 

by the maximality of the length of J*.  Furthermore, 

P.  is m-delayed at 6(q, I) via a . where 

m = n + 1 < k-1 < k. 

The precise relation between permanent blocking and k-delays is 

shown in the next theorem. 

Theorem 3;  P.  is permanently blocked at q via a   if and only 

if P  is waiting for s  at q via a .  and P  is 

not k-delayed via a..  for any k > 0. 

Proof:     Suppose P.  is waiting for s  at q and P  is not 

k-delayed for any k > 0.  Then for each k > 0, either 

i)  there is a legal tape J of length k such that 

G(a±j) i  X(q, J), or 

ii)  for all legal tapes J* of length k-1, 

G(a ) £ X(q, J*). 

Let k = 1.  Then ii) cannot hold since it must be true 

that G(a ) i  A(q, <J>) .  Thus i) holds for k-1:  there 

is a legal tape J of length 1 such that G(a .) i  A(q, J). 

Let k = 2.  Then ii) cannot hold since we have just 

established the existence of a tape which contradicts 

ii) for k = 2.  Proceeding inductively we find that for 

every k > 0 there is a legal tape J of length k 

such that G(a .) I  X(q, J).  Therefore,  P.  is k-blocked 

for every k > 0 and is therefore permanently blocked. 

16 



Conversely, assume that either P  is not waiting for 

s,  at q via a   or P  is k-delayed via a   for 

some k > 0.  If P  is not waiting for s,  at q via 

a .,  then P.  is clearly not permanently blocked at q 

via a., ..  If P.  is k-delayed via a. .  for some k > 0, 
ij       1 ij 

then for every legal tape J of length k G(a ) e A(q, J) 

and therefore P  is not permanently blocked since it 

is not k-blocked for this particular k. 

The corollary below follows directly from Theorem 3. 

Corollary:  If P  is k-delayed at q via a  ,  then P  is not 

permanently blocked at q via a... 

Our last result involving delays and blocking is Theorem A below. 

Theorem 4:  If P.  is k-delayed at q via a .  for some k > 1, 

then P  is  (k - 1)-blocked at q via a... 

Proof:     That P.  is k-delayed implies that there is a legal tape 

J of length k - 1 such that GCa±i) i  x(l>  J)> which 

by definition means that P  is  (k - 1)-blocked. 
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SECTION V 

THE BASIC THEOREM 

In this section we formally introduce the concepts of deadlock 

and of integrity of the data base.  The section ends with the Basic 

Theorem which relates these concepts with the type of data-sharing 

scheduler necessary to avoid deadlock and to preserve the integrity 

of the data base. 

We begin by making explicit the concept of "current access." 

For a state q, we say Pj  has access to s.  at q via a„  if 
-i J a 1 j 

there is a state q',  an input I,  and a tape J with r(a..) 

not in J such that 

(1) X(q*. I) = G(a )  and 

(2) 6(q', IJ) = q. 

Heuristically, P.  has access to s  at q if P  was granted 

access at state q'  and P  has not relinquished access on some 

path from 5(q', I)  to q.  Note that we could have I = a   or 

P.  might have made the request a .  for s  at some predecessor 

state of q'. 

We are naturally concerned with the interaction of processes 

operating on a common set of data.  If S • {s,, ..., s }  is a finite 
—    I       m 

set of elements (intuitively, the data of the data base), we shall be 

interested in the nontrivial or critical portion of S_.     We will 

define C^ C ^ such that C    includes only those elements of S_ 
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which may at some time (that is, in some state) be considered non- 

shareable; S^ - C^ then includes only those elements which may always 

be shared.  Set C  = {s :  there is a state q(j) e K and an integer 

i(j)  such that 

(1) p
1/-->  

ftas access to s.  at q(j),  and 

(2) A(q(J), a ) = D(a.,)  for every i ^ i(j)  and every 

a.. E A. .}. 

We must next define deadlock in the present context.  Deadlock 

is defined here in precisely the expected manner.  A state  q  is a 

deadlock state if there are sets  {P. , ..., P }  of processes and 
11       k 

{s. , ..., s. }  of data such that each P.  has access to s.   at 
Jl       Jk t Jt 

q  and each P.   is waiting for s.    at  q  (where s.    is 
1t 3t+l Jk+1 

defined to be  s . ). 
Jl 

Note that if q is a deadlock state then each P   involved 

is permanently blocked at  q.  On the other hand, if P.  is perman- 

ently blocked at q via a .,  then q is not necessarily a dead- 

lock state (see HC1, page 35).  Thus, a data-sharing scheduler which 

does not allow permanent blocking does not have a deadlock state, but 

a scheduler which has no deadlock state may still allow permanent 

blocking. 

The object of this section is to characterize "unrestricted" 

data-sharing schedulers which do not have deadlock states.  A con- 

jectural characterization might be that data-sharing schedulers which 

have no prior knowledge of the running processes' needs and which do 
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not have deadlock states either do not share the data base or they do 

not preserve the integrity of the data base, in the sense of HC1. 

This conjecture is in fact true, if the concepts involved are taken 

to be as we define them below. 

To formalize the idea of "prior knowledge," we introduce the 

2 
concept of an unrestricted data-sharing scheduler.  A data-sharing 

scheduler M is unrestricted if for every state q and every 

a,, e A, A(q, a..) = error implies that P.  has access to s.  at 
ij ij     i j 

q via some request a"  e A...  Loosely speaking, M is unrestricted 

if no request by a process P is illegal except (possibly) a request 

for a datum to which P already has access. 

3 
We will call M a trivial data-sharing scheduler if one or 

both of the following conditions hold: 

(1) for every state q and every pair  (P  , s )  and 
1  Jl 

(P. , s. )  of P x C    where i # i„, P   has access to 
12  J2 •"•        1 

s   at q implies that P   does not have access to s. 
jl i2 22 

at q; 

(2) |c|4 <  1. 

2 
This term is not to be confused with the term "nonrestricted sequential 
machine," (see, for example, (2)) a synonym for "complete sequential 
machine." 

3 
Not to be confused with a trivial finite-state machine (2). 

4, | 
|X|  means the cardinality of X; i.e., the number of elements of X. 
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M is nontrivial if it is not trivial; that is,  M is nontrivial if 

and only if | c] > 1 and there is a state q,  processes P   and 
1 

P.  where i.. ^ i„,  and data s   and s  , both in C,     such 
X2 X   l 31       J2 

that P.  has access to s.   at q and ?s       has access to Sj 
h jl ±2 J2 

at q.  Intuitively, a data-sharing scheduler is trivial if it "shares" 

data by allowing only one process at a time access to C,     the critical 

subset of the data set S^. 

We say that M shares a datum if there is a state q,  processes 

P   and P  ,  and a datum s €   C    such that P   and P   have 
h *2 J il       i2 

access to s  at q.  This formalization relates to integrity of the 

data base in the following way:  in the case that M shares a datum s 
J 

and  s  should not be shared (consider two .processes simultaneously 

using s.  in write-mode as in HC1), then integrity of the data base 

will, in general, be destroyed.  Thus, "sharing a datum" is a restricted 

converse of the concept of integrity of the data base. 

We are now ready to state the conjectural characterization given 

above in rigorous terms and to prove its validity. 

Basic Theorem:  An unrestricted, nontrivial data-sharing scheduler M 

has a deadlock state or shares a datum. -> 

Proof:  Suppose M does not share a datum.  Pick a state q such 

that processes P.  and P.  have access to s.  and s. 
il       x2 Jl       J2 

(respectively) at q, where s   and s.   are elements of 
jl       22 

C:     such a choice is possible since M is nontrivial.  Fur- 

thermore,  j.. t  j„ since M does not share a datum.  Let J 

5Recall that a data-sharing scheduler has been defined to be a complete 
sequential machine. 
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be the tape a .  • a  . .  Clearly J is a legal tape, and 
11J2   12J1 

X(q, J) = D(a. . ) ' D(a  . )  since M does not share a 
1J2       2J1 

datum.  Now P   is waiting for s   and P.   is waiting 
ll J2        2 

for s.  at 6(q, J).  In addition, P   has access to s, 
Jl lt Jt 

at 6(q, J) , t = 1, 2.  Thus, <5(q, J)  is a deadlock state 

and the theorem is proved. 

This theorem is the principal result of this paper.  Its impli- 

cations will be discussed in the next section. 
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SECTION VI 

IMPLICATIONS OF THE THEOREM 

The Basic Theorem shows the relation between deadlock and integrity 

of the data base in an unrestricted nontrivial scheduler:  either dead- 

lock or simultaneous access for some s. e C must be allowed.  Hence, 
J  - 

an unrestricted, nontrivial scheduler which protects the integrity of 

the data base has a deadlock state. On the other hand, an unrestricted, 

nontrivial, deadlock-free scheduler cannot guarantee integrity of the 

data base unless _C = <f) (that is, unless there is no critical set of 

data). In case the system being considered uses the strategy of rep- 

lication of a datum s.  whenever s.  must be shared, we consider 
J 3 

this to be a case of "M shares a datum." In practice, such a strategy 

is costly and causes great difficulty (see, for example, the discussion 

by Gray(4)). 

We assume for the remainder of this section that we are dealing 

with a system wherein C 4  <j>. 

If integrity of the data base and a guarantee against deadlock 

are necessary, then at least one of the conditions "unrestricted" 

and "nontrivial" must be weakened.  Weakening "nontrivial" leaves a 

trivial scheduler, where at most one process at a time has access to 

the entire critical set of data.  Weakening "unrestricted" means 

allowing for the possibility that some requests (besides those for 

data already accessed) are forbidden.  In a practical situation, then, 
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a user of a shared data base must have a set of guidelines to tell him 

what data he can attempt to access.  This set of guidelines could vary 

dynamically or could remain static.  If it remains static, then 

obvious alternatives are that either the user stated his own limits 

when he began his run (as in the model of HC1), or the system defined 

his limits for him, perhaps for that particular run only or because 

the user has associated with him some access set which is invariant. 

If the guidelines vary dynamically (i.e., during a run), the system 

could decide to vary them on its own initiative or the user could 

request an alteration of his guidelines using a new set of request 

signals.^ 

The models of HC1 do allow a user to alter his guidelines, but only 
by reducing his claim lists.  Increasing the claim list is presently 
a nonexistent option in those models. 
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APPENDIX 

A SUMMARY OF COMPLETE SEQUENTIAL MACHINES 

A complete sequential machine^ is a 5-tuple M = (K, E, A, X, 6) 

where 

K is a nonempty finite set of "states," 

I is a nonempty finite set of "inputs," 

A is a nonempty finite set of "outputs," 

A is a function from K x E into A, and 

6 is a function from K x £ into K. 

The function 6 is called the "next-state" function and A the "output" 

function.  Elements of K will be denoted q or q and elements of E 

will be denoted I or I .  The machine is called "complete" because 

both A and 6 are defined for every pair (q, I) in K x Z. 

A complete sequential machine M can be thought of as a 

processor:  when in a given state q, an input I causes M to change 

its state to the state specified by the next-state function (that 

is, to 6(q, I)) and to emit the output A(q, I).  From the next 

state 6(q, I), another input will cause a similar action by the 

machine M. 

A tape of length k, where k_> 0, is a (possibly empty) sequence 

1 k 
of inputs I , . . . , I .  We extend the definitions of A and 6 so 

'The material in this section is found in (2, 3). A similar concept 
of machine is presented in HC1 to model a process. 
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1      k 
that if M is in state q, <$(q, I ... I ) is the state of M after 

1 k 
the sequence of inputs I , . . . , I has been processed by M and 

1      k 
A(q, I  ... I ) is the sequence of outputs produced when M has 

Ik 1 
processed the tape I  . . . I . For example, if X(q, I ) = 1 and 

X(6(q, I1), I2) = 3, then 6(q, I1!2) = 6(6(q, I1), I2) and 

1 2 
A(q, I I ) is the sequence 1, 3. 
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